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Abstract

A finite element method for analysing the nonlinear behaviour of reinforced concrete structures that accounts for cracking and
compression-softening of the concrete and dowel action and confining effect of the reinforcing bars has been developed by the
second and third authors. It was applied in this project to study the load–deflection behaviour and failure characteristics of deep
reinforced concrete coupling beams by analysing the models previously tested by the first and second authors and using it to conduct
a parametric study on the effects of varying the shear reinforcement and restraining the axial elongation of the coupling beams.
The analysis showed good agreement between the theoretical and experimental results and revealed that deep coupling beams
behave quite differently from ordinary beams; after cracking, a deep coupling beam behaves more like a truss with a diagonal
concrete strut which rotates and causes axial elongation. On the other hand, the parametric study revealed that although adding
more shear reinforcement could suppress shear-tension failure, it would cause shear-sliding failure at the beam–wall joints and that
although restraining the axial elongation could increase the shear capacity, it would at the end lead to a more brittle failure.
 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Shear walls are commonly used in tall concrete build-
ings to resist lateral loads. Due to the presence of regular
door or window openings, a shear wall is often divided
into smaller wall units coupled together by coupling
beams. During a major earthquake, if the coupling beams
were very strong, the wall units might fail due to the
large axial forces and bending moments induced in them
without prior yielding of the coupling beams. As the
walls are taking vertical loads and are the major lateral
loads resisting elements, any damage to the walls could
endanger the safety of the building and render the repair
after earthquake very difficult. On the other hand, if the
coupling beams were not too strong, they would yield
and dissipate the excessive vibration energy before the
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wall units yield thereby reducing the axial forces induced
in the walls and protecting the walls from being dam-
aged. Hence, the coupling beams should be designed to
yield before the walls yield but then the coupling beams
would be subjected to a certain ductility demand. In any
case, the earthquake resistance of a coupled shear wall
structure is highly dependent on the nonlinear behaviour,
especially the strength and ductility, of the coupling
beams.

Since the widths of door and window openings usually
range from 1.0 to 1.5 m, most coupling beams are quite
short and deep and have span/depth ratios of 2.0 or even
lower. Being more like deep beams, coupling beams
with span/depth ratios lower than 2.0 tend to fail in shear
rather than in flexure. Extensive tests of coupling beam
models and coupled shear wall models aiming to study
the nonlinear behaviour and failure characteristics of
deep reinforced concrete coupling beams[1–4] and to
investigate the effects of the nonlinear behaviour of
coupling beams on the structural performance of coupled
shear wall structures[5,6] have been carried out. The
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coupling beam tests revealed that deep coupling beams
behave quite differently from ordinary beams in frame
structures and that significant local deformation occurs
at the beam–wall joints. On the other hand, the coupled
shear wall tests revealed that both under-coupling, which
leads to early yielding of the coupling beams and thus
a high ductility demand, and over-coupling, which leads
to failure of the coupled shear wall structure without
prior yielding of the coupling beams, are undesirable.

Regarding theoretical studies, coupling beams have
been treated as ordinary beams and coupled shear walls
analysed by modelling the coupling beams either as an
equivalent continuous shear medium [7,8] or as discrete
beam elements with horizontal rigid arms incorporated
to simulate the rigid portions of the beams within the
walls [9,10]. The finite element method has also been
applied to analyse coupled shear walls by modelling the
walls, coupling beams and beam–wall joints with plane
stress elements, beam elements with no rigid arms, and
transition zone elements, respectively [11]. These studies
were generally based on assumed elasto-plastic or non-
linear load–deflection behaviour of the coupling beams
and aimed at evaluating the possible effects of the non-
linear behaviour of the coupling beams on the overall
structural performance of the coupled shear wall struc-
ture. None of these studies were able to analyse the non-
linear behaviour of deep coupling beams, which gener-
ally have limited ductility and in reality do not behave
like ordinary beams. That was the reason why in these
studies, the beam elements modelling the coupling
beams needed to be assumed to have certain nonlinear
load–deflection behaviour, which was treated as input
data rather than output result of the analysis.

There have been few theoretical studies on the failure
behaviour of deep coupling beams. Subedi [12,13] has
investigated the failure modes of deep coupling beams
and proposed a mathematical model for representing the
major shear failure mode—the diagonal splitting failure
mode (this particular shear failure mode is referred to as
the shear-tension failure mode in this paper). His investi-
gations revealed that the failure behaviour of deep coup-
ling beams actually differs quite significantly from the
conventional double-curvature bending concept of ordi-
nary beams subjected to vertical shear and contraflexural
bending moments at the ends. His mathematical model
would allow the ultimate capacities of coupling beams
failing under the diagonal splitting mode to be predicted
but would not produce any nonlinear load–deflection
curves for evaluating the ductility of the coupling beams
or analysing the overall structural performance of the
coupled shear wall structure. In fact, there is still no
theoretical method available for evaluating the nonlinear
load–deflection behaviour of deep coupling beams.

Although before cracking, a deep coupling beam
behaves like an ordinary beam subjected to flexure, after
cracking, it behaves more like a truss with a diagonal

concrete strut [1,2]. Hence, the assumption that plane
sections remain plane after deformation is not applicable
to a cracked coupling beam. To analyse the nonlinear
load–deflection behaviour and failure characteristics of
a coupling beam, which cracks quite extensively before
failing, the coupling beam must not be modelled as an
ordinary beam using any beam element. In fact, since
the nonlinear behaviour of a coupling beam is highly
dependent on the boundary conditions, the reinforcement
layout, the crack pattern and the steel–concrete interac-
tion at the cracks, it would seem that the only suitable
method of analysis is to model the coupling beam itself
by finite elements. Furthermore, as significant interaction
between the coupling beam and the walls connected to
the coupling beam occurs at the beam–wall joints and
the local deformations of the wall panels near the beam–
wall joints may have certain effects on the behaviour of
the coupling beam, the wall panels in the vicinity of the
beam–wall joints need to be included as integral parts
of the coupling beam in the finite element analysis.

However, although the finite element method has been
widely used for the analysis of reinforced concrete struc-
tures [14,15], very few, if any at all, detailed nonlinear
analysis of reinforced concrete coupling beams using the
finite element method has been attempted. In the
research project reported herein, the nonlinear finite
element method recently developed by the second and
third authors [16,17] was employed to study the nonlin-
ear load–deflection behaviour and failure characteristics
of deep reinforced concrete coupling beams. It was first
applied to analyse the four large-scale coupling beam
models tested by the first and second authors [18] to
verify its applicability to coupling beams and to study
the fine details of the stress distribution/ redistribution
in the concrete and the steel reinforcement, the local
deformations at the beam–wall joints and the failure
mechanisms, which might not have been fully revealed
in the tests. After then, it was used to conduct a para-
metric study on the effects of adding more shear
reinforcement and restraining the axial elongation of the
coupling beams by analysing coupling beam models
with different amounts of shear reinforcement added and
with different boundary conditions imposed.

2. Model testing of coupling beams

2.1. Test method

Although extensive testing of coupling beam models
has been performed, the boundary conditions that the
rotations of the two ends of a coupling beam are equal
and that local deformations occur at the beam–wall
joints, which could have substantial influences on the
behaviour of the coupling beam, had not been correctly
simulated in most of the previous tests. To resolve the
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problem, the first and second authors have developed a
new method of testing coupling beams that ensures equal
rotations at the ends of the coupling beam specimen by
incorporating a rotation restraining mechanism in the test
set-up and takes into account local deformations at the
beam–wall joints by incorporating the wall panels con-
nected to the coupling beam as integral parts of the coup-
ling beam specimen [18]. Since the test method has been
reported in an earlier paper, only an outline is
presented herein.

The test set-up is shown in Fig. 1. As shown in the
figure, the coupling beam specimen is erected with its
longitudinal axis in the vertical direction. One end of the
specimen is fixed to a rigid ground beam and the other
end is connected at to a T-shaped steel-loading frame.
Shear load is applied to the specimen through the load-
ing frame by a servo-controlled hydraulic actuator,
whose loading and support ends are pin-connected to the
loading frame and a horizontal reaction frame respect-
ively. The line of action of the applied load is aligned
to pass through the centre of the specimen. A rotation
restraining mechanism consisting of two parallelogram-
shaped pin-jointed trusses is installed to ensure that the
rotations of the two ends of the specimen are equal.
There is no restraint on the deformation of the specimen
if the two ends of the specimen are parallel (i.e. rotate
by the same amount). But if the two ends of the speci-
men are not parallel (i.e. rotate by different amounts), the
rotation restraining mechanism will force the two ends to
remain parallel. Apart from restraining the end rotations
to be equal, the mechanism will not impose any restraint
on the axial elongation/shortening of the specimen. On
the other hand, out-of-plane movements of the loading
frame and the specimen are restrained by the provision
of roller guides. Regarding the test procedure, the speci-
men is tested under load control before the main
reinforcement starts to yield. After yielding of the main
reinforcement, the control mode is changed to displace-
ment control so that the post-peak behaviour of the
specimen may be measured.

Fig. 1. Test set-up.

Using this newly developed test method, a number of
large-scale coupling beam models have been tested mon-
otonically [18] and cyclically [19]. In this theoretical
study, only the four monotonically tested specimens
are analysed.

2.2. Models tested

The four monotonically tested coupling beam speci-
mens were named as MCB1, MCB2, MCB3 and MCB4,
respectively. They were 1/2-scaled and have similar
longitudinal reinforcement ratios and similar transverse
reinforcement ratios but different span/depth ratios of
1.17, 1.40, 1.75 and 2.00, respectively. Fig. 2 shows the
dimensions and details of one of the coupling beam

Fig. 2. Dimensions and details of MCB1.
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specimens tested. With the thickness and clear span of
the specimens fixed at 120 and 700 mm, respectively,
different span/depth ratios were obtained by varying the
depth of the coupling beam. At each end of a coupling
beam specimen, a rectangular end block (1300 × 750
mm) having the same thickness as the coupling beam
and representing part of the wall connected to the coup-
ling beam was cast integrally as part of the specimen.
These end blocks were to allow for local deformations
at the beam–wall joints.

Table 1 lists the structural parameters of the four
specimens. In each specimen, equal amounts of top and
bottom longitudinal reinforcement were provided
throughout the length of the coupling beam. Additional
longitudinal reinforcement was placed near mid-depth of
the beam section. All longitudinal reinforcing bars in the
coupling beam were provided with generous anchorage
into the end blocks. Stirrups were provided in each coup-
ling beam specimen as shear reinforcement. All speci-
mens were cast of normal strength concrete with their
planes lying horizontally. High-yield deformed bars
(T12 and T8) were used as main longitudinal reinforce-
ment whereas mild steel plain round bars (R8) were used
for the additional longitudinal reinforcement and the stir-
rups. The detailed test results have been presented in
Ref. [18].

3. Finite element analysis of coupling beams

3.1. Methodology

The finite element method developed by the second
and third authors is used to analyse the coupling beam
models. It has been successfully applied to study the
effects of dowel action of reinforcing bars on the shear
behaviour of deep beams [16] and the effects of concrete
confinement on the behaviour of shear walls [17]. Since
the details of the method have been presented elsewhere,
only an outline is presented herein.

The concrete and the steel reinforcement inside are
together modelled by a plane stress element, which is a
four-noded isoparametric quadrilateral element with two

Table 1
Structural parameters of the coupling beam specimens testeda

Specimen Span/depth ratio Top and bottom longitudinal Additional longitudinal Transverse reinforcement (ratio)
reinforcement (ratio) reinforcement

MCB1 1.17 3T12 (0.49%) 4R8 R8 @ 75 c/c (1.07%)
MCB2 1.40 2T12+T8 (0.49%) 4R8 R8 @ 75 c/c (1.07%)
MCB3 1.75 2T12 (0.50%) 2R8 R8 @ 75 c/c (1.07%)
MCB4 2.00 T12+2T8 (0.56%) 2R8 R8 @ 75 c/c (1.07%)

a T and R denote high-yield deformed bars and mild steel plain round bars. Equal amounts of longitudinal reinforcement were provided at the
top and the bottom of the beam section. The additional longitudinal reinforcement was provided at mid-depth of the beam section.

extra non-conforming bending modes included to
remove shear locking. A 2 × 2 grid of Gauss points is
used in the numerical integration to obtain the element
stiffness matrix. The constitutive matrix of the element
consists of two parts, one contributed by the concrete
and the other contributed by the steel reinforcement. For
the concrete, the constitutive matrix is formed in the
usual way taking into consideration the biaxial behaviour
of the material. A smeared crack model is adopted. The
concrete is assumed to be isotropic before cracking and
orthotropic after cracking. Tension softening and com-
pression softening are allowed for in the stress–strain
relation. For the steel reinforcement, the constitutive
matrix is formed by assuming that the reinforcing bars
are perfectly bonded to the concrete and smeared, i.e.
uniformly distributed, throughout the concrete element
containing them. A tri-linear stress–strain relation with
yielding and strain hardening incorporated is assumed
for the reinforcing bars. Moreover, the stress transfer
across cracks due to bond and dowel actions of reinforc-
ing bars and the confinement effects of transverse
reinforcement provided are also considered.

3.2. Analysis procedure

During the analysis, the loads are applied incremen-
tally either directly in the form of prescribed loads or
indirectly in the form of prescribed displacements at the
loading points. At each load–displacement increment
step, direct iteration using secant stiffness of the struc-
ture is employed so that the analysis may be extended
into the post-peak range within which the tangent stiff-
ness can become zero or negative. In this particular
study, the loads are applied indirectly through prescribed
displacements at the loading points for two reasons: first,
the coupling beam models to be analysed were actually
tested under displacement control when they failed;
second, analysis with loads applied as prescribed dis-
placements would allow the post-peak behaviour to be
obtained.
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Table 2
Properties of the steel reinforcing barsa

Type Area (mm2) fy (MPa) ey (me) fy1 (MPa) ey1 (me) fy2 (MPa) ey2 (me) Es (GPa)

R8 48.1 346 1730 346 30,000 480 252,000 200
T8 54.0 517 2585 517 28,000 717 173,000 200
T12 111.6 525 2625 525 29,000 637 184,000 200

a fy, fy1 and fy2 are the stresses at yield, at start of strain hardening and at ultimate state. ey, ey1 and ey2 are the strains at yield, at start of strain
hardening and at ultimate state.

4. Numerical results

The above finite element method has been applied to
analyse the four previously tested specimens, MCB1,
MCB2, MCB3 and MCB4 to verify its applicability to
deep coupling beams and to study the fine details of the
nonlinear behaviour of deep coupling beams which
might not have been revealed during the tests. Tables 2
and 3 list the properties of the reinforcing bars and the
concrete of each coupling beam specimen used in the
analysis, which were derived from test results. Fig. 3
shows a typical finite element mesh used in the analysis.
In order to simulate the testing conditions of the coup-
ling beam specimens, the steel loading frame and the
rotation restraining mechanism have also been included
in the mesh. During the analysis, the load was applied
in the form of prescribed displacement at the loading
point, which was incremented from zero in steps of 0.2
mm until a maximum value of 60 mm was reached. On
the other hand, the reaction force at the loading point
was taken as the applied load.

4.1. Load–deflection behaviours

The theoretically evaluated load–deflection curves of
the four specimens are presented together with the exper-
imentally measured load–deflection curves in Fig. 4. In
Fig. 4, the applied load plotted is the reaction force at
the loading point, which corresponded to the load meas-
ured by the load cell within the actuator, while the
deflection plotted is the lateral displacement of the speci-

Table 3
Properties of the concretea

Specimen Age (day) fcu (MPa) fc (MPa) eco (me) ft (MPa) et (me) Poisson’s ratio Eo (GPa)
n

MCB1 36 55.8 37.4 3000 3.1 180 0.19 24.6
MCB2 33 56.1 37.6 3000 3.1 180 0.18 23.9
MCB3 57 48.6 32.6 3000 2.9 180 0.20 23.6
MCB4 33 49.6 33.2 3000 3.0 180 0.15 24.2

a fcu, fc and ft are the cube compressive strength, unconfined uniaxial compressive strength and tensile strength of the concrete. eco and et are
the strains at peak compressive stress and at peak tensile stress.

Fig. 3. Finite element mesh used to analyse MCB1.

men at the top right corner, which corresponded to the
displacement measured by LVDT no. D2 during the test.

The experimental results revealed that the load–
deflection curve of MCB1, which failed in shear, has no
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Fig. 4. Theoretical and experimental load–deflection curves of the specimens. (a) MCB1 (L/H=1.17); (b) MCB2 (L/H=1.40); (c) MCB3 (L/H=1.75);
(d) MCB4 (L/H=2.00).

obvious yield point, while the load–defection curves of
MCB2, MCB3 and MCB4, which failed in flexure, have
obvious yield points at deflections of around 4–6 mm.
On the whole, the theoretical load–deflection curves of
the four specimens agree quite well with the correspond-
ing experimental curves. However, whilst the experi-
mental curves are comparatively smooth, each exhibiting
a flat yield plateau with no obvious peak points, the
theoretical curves are more zigzag, each showing ups
and downs after reaching the first peak point. On each
theoretical curve in Fig. 4, the first and second peak
points are marked as A and B, respectively. It is note-
worthy that in each of the specimens MCB1 and MCB2,
the load at point A is higher than that at point B, but in
each of the specimens MCB3 and MCB4, the load at
point A is lower than that at point B.

For comparison, the theoretically evaluated loads and
deflections at points A and B are tabulated side by side
with the experimentally measured maximum loads and
deflections at maximum loads in Table 4. It is seen that

Table 4
Experimental and theoretical peak loads and deflections at peak loads

Specimen Experimental Theoretical

At peak load At point A At point B

Load (kN) Deflection (mm) Load (kN) Deflection (mm) Load (kN) Deflection (mm)

MCB1 344 42.5 364 10.8 274 44.2
MCB2 260 41.0 296 10.3 249 35.1
MCB3 159 38.0 155 6.2 164 51.4
MCB4 140 48.2 137 6.2 143 57.4

the theoretically evaluated maximum loads (in each
specimen, the maximum load is taken as the larger value
of the load at point A and the load at point B) are in
general slightly higher than the experimentally measured
maximum loads, the errors being only 5.8%, 13.8%,
3.1% and 2.1% for the specimens MCB1, MCB2, MCB3
and MCB4, respectively. Moreover, for each specimen,
the theoretically evaluated deflection at point B agrees
quite well with the experimentally measured deflection
at maximum load.

However, it is also evident from Fig. 4 that near point
A, the theoretically evaluated load–deflection curves do
not agree well with the experimentally measured load–
deflection curves, especially for the specimens MCB1
and MCB2. In fact, it may be questioned why there
should be such a peak point A in each of the theoretically
evaluated load–deflection curves whereas no such peak
points have been observed in the experiments. A closer
look at the numerical results of the theoretical analysis
revealed that the discrepancy between the theoretical and
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the experimental load–deflection curves near point A is
due to the following reasons.

1. In all the specimens, flexural cracks were formed at
the tension sides of the beam–wall joints soon after
the loads were applied. During the tests, it was
observed that once formed, the flexural cracks gradu-
ally opened up. Associated with the finite widths of
the flexural cracks, bond-slip of the main reinforcing
bars there also occurred. The opening up of the flex-
ural cracks and the pullout of the reinforcing bars at
the joints contributed significantly to the rotations and
thus the lateral deflections of the coupling beam
specimens. In the finite element analysis, however,
perfect bond of the reinforcing bars was assumed and
thus although the cracked elements could have very
large tensile strain induced, the smeared cracks could
not have finite widths. As a result, the additional
deflections of the specimens due to opening up of the
flexural cracks and pullout of the reinforcing bars
have not been properly modelled. That is why in Fig.
4, the theoretical curves are steeper than the experi-
mental curves after the joints have cracked (within the
parts of the curves prior to reaching point A).

2. In the finite element analysis, after the first peak load
(point A) was reached, substantial stress redistribution
occurred even with very small increment of displace-
ment at the loading point, leading to rapid increase of
the tensile strains developed in the cracked elements.
As a result, although the stress–strain curve of the
concrete under tension has a descending branch, the
tensile stresses developed in the cracked elements
decreased almost immediately to negligible values
after point A was reached. That is why in Fig. 4, the
theoretical curves dropped after reaching point A
quite rapidly, resulting in fairly sharp peaks at point
A, which do not exist in the experimental curves. The
root cause of this problem was that in the real struc-
ture, the tensile strains in the concrete were highly
localised at the cracks and the concrete between two
adjacent cracks continued to contribute to the load
resistance of the structure by means of tension stiffen-
ing, but in the finite element analysis, due to the adop-
tion of the smeared crack model, such strain localiz-
ation and tension stiffening could not be properly
modelled, leading to inaccurate estimation of the
effective stiffness of cracked concrete.

The above problems with the finite element method
are not easy to resolve. To overcome these problems,
further refinement of the finite element method taking
into account bond-slip of the reinforcing bars and strain
localization of the cracked concrete is needed. Neverthe-
less, it is still considered that apart from the slight dis-
crepancy between the theoretical and experimental load–
deflection curves near point A, the finite element analy-

sis has overall speaking produced theoretical load–
deflection curves in good agreement with the experi-
mental results.

4.2. Crack patterns and failure modes

The theoretically predicted crack patterns of the four
specimens when the lateral deflections corresponded to
point B on the load–deflection curves are compared to
the experimentally observed crack patterns in Figs. 5 and
6. In the theoretical crack patterns shown, the cracks are
drawn as crack marks in the finite elements such that the
width and length of each crack mark are proportional to
the tensile strain in the direction normal to the crack.

During the tests, it had been observed that in all the
specimens, flexural cracks were first formed at the ten-
sion sides of the beam–wall joints soon after the loads
were applied. As the applied load increased, these flex-
ural cracks extended slightly into the wall panels and
then turned to run parallel to the beam–wall interfaces.
At the same time, new flexural cracks appeared in the
beams at the tension sides of the beams. Upon further
loading, many of the flexural cracks formed inside the
beams turned to an inclined direction and propagated
towards the compression corners at the beam–wall joints
to become combined flexural and shear cracks. Eventu-
ally, diagonal shear cracks also appeared within the
coupling beams. The theoretically predicted crack pat-
terns obtained by the finite element analysis are in good
agreement with the observed crack patterns at the vari-
ous stages of the tests.

Both the experimental and theoretical results indicated
that the major cracks governing the failure character-
istics of the coupling beam specimens were the flexural
cracks formed at the beam–wall interfaces. These flex-
ural cracks propagated from the tension corners of the
beam–wall interfaces to the compression corners until
they cut through approximately 3/4 of the beam–wall
interfaces, leaving behind only about 1/4 of the beam–
wall interfaces remaining uncracked. Thus, prior to fail-
ure, the compression zones at the beam–wall interfaces
had depths of only 1/4 of the respective beam depths.
With such small concrete compressive zones effective in
resisting shear, there should have been a tendency for
the coupling beam specimens, especially those with rela-
tively small span/depth ratios, which were subjected to
fairly high nominal shear stresses, to fail by sliding along
the beam–wall joints.

Evidently, coupling beams with different span/depth
ratios could fail in different failure modes. During the
experimental study, the failure modes were determined
from the gradual development of crack pattern, opening
up of the cracks, yielding of the steel reinforcing bars,
crushing of the concrete and deformed shapes of the
models after the tests. On the other hand, from the finite
element analysis results, the theoretically predicted fail-
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Fig. 5. Predicted and observed crack patterns of MCB1 and MCB2. (a) MCB1; (b) MCB2.

ure modes were determined from the changes in crack
pattern with the loading stage as plotted in Figs. 5 and
6, increases in tensile and shear strains of the cracks,
yielding of the steel reinforcing bars and crushing of the
concrete during failure as revealed from the numerical
results. Table 5 presents the experimentally observed and
theoretically predicted failure modes of the four coupling
beam specimens. The experimental results revealed that
the specimen MCB1 failed in a shear-tension mode (i.e.,
failing by yielding of the shear reinforcement and open-
ing up of the diagonal shear cracks near the centre of
the coupling beam), while the specimens MCB2, MCB3
and MCB4 failed in a flexural mode (i.e., failing by
flexure at the two ends of each coupling beam). On the
other hand, the finite element analysis predicted that the
specimen MCB1 should fail in a shear-sliding mode (i.e.,
failing by shear-sliding along the beam–wall joints), and
the specimens MCB2, MCB3 and MCB4 should fail in
a flexural mode.

Although the theoretically predicted failure modes for
MCB2, MCB3 and MCB4 agree with the experimentally

observed failure modes, the predicted failure mode for
MCB1 is different from the observed one. It should not
be unexpected that deep coupling beams would tend to
fail in shear. However, there are two possible shear fail-
ure modes, namely: the shear-tension mode and the
shear-sliding mode. The actual failure mode that would
occur is dependent on which failure mode would lead to
a lower failure load. If the failure load of the shear-ten-
sion mode was lower than that of the shear-sliding mode,
the shear-tension mode would occur; otherwise, the
shear-sliding mode would occur instead. If, however, the
failure loads of the two shear failure modes were very
close to each other, then either failure mode could occur;
a slight variation of the yield strength of the shear
reinforcement or a small error in the theoretical evalu-
ation of the failure loads could lead to a sudden change
of the failure mode but little change in the failure load.
In the case of the specimen MCB1, although the theoreti-
cally predicted failure mode is different from the
observed one, the theoretically evaluated failure load
actually differs from the experimentally measured failure
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Fig. 6. Predicted and observed crack patterns of MCB3 and MCB4. (a) MCB3; (b) MCB4.

Table 5
Experimentally observed and theoretically predicted failure modes

Specimen Experimentally observed Theoretically predicted

MCB1 Shear-tension failure preceded by yielding of shear reinforcement Shear-sliding failure at beam–wall interfaces
MCB2 Flexural failure Flexural failure
MCB3 Flexural failure Flexural failure
MCB4 Flexural failure Flexural failure

load by only 5.8%. The probable reason was that the
failure loads of the two shear failure modes were actually
quite close to each other, as reflected by the close agree-
ment between the theoretically evaluated and the exper-
imentally measured failure loads despite the fact that the
theoretical failure mode is different from the observed
one.

4.3. Axial elongation

The test results revealed that all the coupling beam
specimens elongated significantly in the axial direction
when subjected to further loading in the lateral direction
after cracking. The theoretical results also indicated that
after a certain stage of loading, which matched quite
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closely with the time of cracking, the coupling beam
specimens would start to elongate. Fig. 7 plots the axial
elongation versus the lateral deflection of each of the
four specimens, as obtained by experiment and by finite
element analysis. It is seen that on the whole the theoreti-
cal axial elongation–lateral deflection curves agree quite
well with the corresponding experimental curves. How-
ever, the theoretical curves are sometimes lower than the
experimental curves at large lateral deflections,
especially for the specimens MCB1 and MCB2. This
implies that the finite element method tends to underesti-
mate the axial elongations of deep coupling beams at
large lateral deflections.

Based on the crack patterns shown in Figs. 5 and 6,
it is postulated that the mechanism leading to axial
elongation of the coupling beams may be described as
in the following. After cracks were formed, each coup-
ling beam behaved more like a truss consisting of a diag-
onal concrete strut under compression and the longitudi-
nal reinforcing bars under tension, as shown in Fig. 8.
When the coupling beam was subjected to further shear
load, the truss deflected laterally and the diagonal strut
rotated about the compressive zones of the beam–wall
interfaces. It was the rotation of the strut that led to axial
elongation of the coupling beam.

Assuming that the compression zones were of depth
equal to 1/4 of the depth of the beam–wall interfaces,
the inclination angle q of the diagonal strut may be esti-
mated from the equation: tan q = (4 /3) (L /H) where L
and H are the clear span and depth of the coupling beam.
When the diagonal strut rotated by an amount equal to
�q, the corresponding axial elongation �L and lateral
deflection u may be evaluated as:

�L � 0.75H�q � Lec (1)

Fig. 7. Axial elongation-lateral deflection curves of the specimens. (a) MCB1 (L/H=1.17); (b) MCB2 (L/H=1.40); (c) MCB3 (L/H=1.75); (d)
MCB4 (L/H=2.00).

Fig. 8. Mechanism of beam elongation due to concrete strut rotation.

u � L�q�0.75Hec (2)

in which ec is the strain developed in the diagonal con-
crete strut. Solving the above equations, the following
relation between the axial elongation and the lateral
deflection may be obtained:

�L � 0.75(H /L)u � (0.56H2 /L � L)ec (3)

It has been found from both experimental measure-
ment and finite element analysis that at small lateral
deflection, the strain in the concrete strut varied with the
lateral deflection, but at large lateral deflection within
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the yield plateau region of the load–deflection curve, the
load remained approximately constant and the strain in
the concrete strut reached a maximum negative value of
about �0.3% (compressive strain is negative). Hence, at
large lateral deflection within the yield plateau region,
the relation between the axial elongation and the lateral
deflection may be simplified as:

�L � 0.75(H /L)u�0.003 � (0.56H2 /L � L) (4)

The above equation is plotted in Fig. 7, from which
it can be seen that the equation agrees fairly well with
the experimental and finite element analysis results.

The mechanism shown in Fig. 8 may also be used to
explain why the finite element method tends to under-
estimate the axial elongations of deep coupling beams.
In the finite element modelling, perfect bond of the rein-
forcing bars is assumed and thus the flexural cracks at
the beam–wall joints cannot really open up as illustrated
in Fig. 8. As a result, the rotation of the diagonal con-
crete strut is hindered to some extent and the finite
element model tends to underestimate the rotation angle
of the diagonal strut and the axial elongation of the coup-
ling beam.

5. Parametric studies

5.1. Effect of shear reinforcement

Deep reinforced concrete coupling beams tend to fail
in shear, which is a brittle mode of failure. Therefore,
when designing deep coupling beams, it is necessary to
provide sufficient shear reinforcement to avoid shear
failure. However, there are two possible modes of shear
failure: shear-tension failure and shear-sliding failure. It
is not easy to suppress both modes of shear failure just
by adding more shear reinforcement, as will be seen in
the following study.

To investigate the effect of shear reinforcement, a
parametric study using finite element analysis has been
carried out. The specimen MCB1 was selected for the
study. Three cases were analysed. In Case 1, the speci-
men was provided with half the amount of shear
reinforcement provided in the model test (R8 @ 150 mm
c/c, rsv = 0.54%). In Case 2, the specimen was provided
with the same amount of shear reinforcement as in the
model test (R8 @ 75 mm c/c, rsv = 1.07%). In Case 3,
the specimen was provided with double the amount of
shear reinforcement provided in the model test (R8 @
37.5 mm c/c, rsv = 2.14%). Apart from the shear
reinforcement, the other structural parameters were kept
the same as those of the real model tested.

Fig. 9 plots the load–deflection curves obtained in the
three cases by finite element analysis. In Case 1, with
the smallest amount of shear reinforcement provided, the
peak load reached was the lowest. In Case 2, with a

Fig. 9. Effect of varying shear reinforcement in specimen MCB1.

somewhat larger amount of shear reinforcement pro-
vided, the peak load reached was higher but the increase
in peak load was not in proportion to the increase in the
amount of shear reinforcement. In Case 3, with the larg-
est amount of shear reinforcement provided, the peak
load reached has remained basically the same as that
reached in Case 2. Hence, when the amount of shear
reinforcement increases to beyond certain limit, there is
no further increase in shear strength.

Accompanied with the change in the peak load
reached, there appear in Fig. 9 also certain changes in
the post-peak behaviour. In Case 1, with the smallest
amount of shear reinforcement provided, the load–
deflection curve descended at a slower rate after reaching
the peak indicating that the specimen failed in a rela-
tively less brittle manner. In Cases 2 and 3, the load–
deflection curves descended fairly rapidly at the post-
peak stage indicating very brittle failure of the specimen.
Detailed study of the finite element results revealed that
the difference in post-peak behaviour was due primarily
to the different modes of failure. In Case 1, the specimen
failed in the shear-tension mode. This mode of failure
is characterised by the numerous diagonal cracks formed
in the coupling beam, yielding of the shear reinforce-
ment before failure, and opening up of the diagonal
cracks until complete failure. In Cases 2 and 3, the speci-
men failed in the shear-sliding mode. This mode of fail-
ure is characterised by the formation of deep flexural
cracks at the beam–wall joints, sliding movement along
the cracks at the beam–wall joints during failure, and
reliance on the dowel action of the longitudinal reinforc-
ing bars at the beam–wall joints for residual shear
strength at post-peak stage.

Comparing the numerical results from the three cases
analysed, it is evident that the shear-sliding failure mode
is more brittle than the shear-tension failure mode, for
the obvious reason that the shear-sliding mode is not
preceded by yielding of the shear reinforcement whereas



24 Z.Z. Zhao et al. / Engineering Structures 26 (2004) 13–25

the shear-tension mode is always preceded by yielding
of the shear reinforcement. In any case, both modes of
shear failure are brittle in nature and should be avoided.
However, the addition of more shear reinforcement to
suppress shear-tension failure could lead to shear-sliding
failure, which is even more dangerous. Hence, during
the design of deep coupling beams, sufficient shear
reinforcement should be provided to prevent shear-ten-
sion failure but care should be taken to avoid putting in
excessive shear reinforcement, which could trigger
shear-sliding failure.

5.2. Effect of restraint against axial elongation

In the model testing and the finite element analysis
simulating the model tests, the boundary conditions were
applied in such a way that the coupling beam specimens
were free to elongate in the axial direction without any
restraint. However, in a real coupled shear wall structure,
the coupling beams are not necessarily free to elongate.
First, if there are floor slabs connected to the coupling
beams, the in-plane stiffness of the floor slab would act
as restraint against the axial elongation of the coupling
beams. Second, even if there are no floor slabs connected
to the coupling beams, the lateral stiffness of the walls
could to some extent restrain the axial elongation of the
coupling beams. Any such restraint against the axial
elongation of the coupling beams would impose axial
compression loads onto the coupling beams and change
the nonlinear behaviour of the coupling beams.

In order to investigate the effect of any restraint
against axial elongation on the nonlinear behaviour of
deep coupling beams, the specimen MCB1 has been re-
analysed by the finite element method with the displace-
ment boundary conditions applied such that the axial
elongation of the coupling beam was fully restrained.
Fig. 10 presents the load–deflection curves of MCB1

Fig. 10. Effect of restraining axial elongation of specimen MCB1.

obtained with or without the restraint against axial
elongation applied. It can be seen from the figure that
the load–deflection curve of the coupling beam changed
quite substantially when restraint against axial elong-
ation was applied. With axial elongation fully restrained,
the coupling beam was able to withstand substantially
higher lateral load but it also failed in a more brittle
manner. Detailed study of the finite element analysis
results revealed that the restraint against axial elongation
had induced fairly high compressive stresses onto the
diagonal concrete strut formed inside the coupling beam
and caused the coupling beam to fail in shear by crush-
ing of the diagonal concrete strut (this mode of failure
may be described as shear-compression mode). Hence,
it may be concluded that any restraint against axial
elongation could significantly affect the nonlinear behav-
iour of deep coupling beams and should thus be properly
simulated or allowed for in model testing and theoretical
analysis. Further study on the effect of restraint against
axial elongation is recommended.

6. Conclusions

The nonlinear behaviour and failure characteristics of
deep reinforced concrete coupling beams under mono-
tonic loading condition have been studied by applying
the nonlinear finite element method recently developed
by the second and third authors to analyse the large scale
coupling beam models previously tested by the first and
second authors. Comparison of the finite element analy-
sis results to the experimental results showed good
agreement in the load–deflection curves, maximum
loads, crack patterns, failure modes and axial elonga-
tions, except minor discrepancies due to inadequate
modelling of the bond-slip of reinforcing bars and the
strain localization of cracked concrete. On the whole, the
finite element method is capable of dealing with deep
reinforced concrete coupling beams, but further refine-
ment taking into account bond-slip of reinforcing bars
and strain localization and tension stiffening of cracked
concrete is recommended.

Based on the previous experimental results and the
details revealed by the present finite element analysis, it
may be concluded that the flexural cracks formed at the
tension sides of the beam–wall joints and the diagonal
shear cracks formed near the centre would together gov-
ern the nonlinear behaviour and failure characteristics of
a coupling beam. The flexural cracks at the beam–wall
joints would, once formed, gradually open up leading to
significant local rotations at the joints and propagate to
the compression sides of the joints until only 1/4 of the
beam depth remain uncracked causing small effective
concrete area for resisting shear and high tendency to
fail by shear-sliding. On the other hand, after formation
of the diagonal shear cracks, the coupling beam behaves
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more like a truss consisting of a diagonal concrete strut
and the longitudinal reinforcing bars. The transverse
component of the compression developed in the diagonal
strut acts against the applied shear load while the longi-
tudinal component pushes the two walls at the ends
apart. As the coupling beam deflects laterally, the diag-
onal strut rotates resulting in axial elongation of the
coupling beam. A structural model is yet to be
developed, but one thing for sure is that deep coupling
beams behave very differently from ordinary beams and
should not be modelled as beams.

Lastly, parametric studies on the effects of varying the
shear reinforcement and restraining the axial elongation
of the coupling beams have been carried out. It was
found that although adding more shear reinforcement
could increase shear strength and suppress shear-tension
failure, it would also lead to shear-sliding failure, which
is even more brittle. It was also found that any restraint
against the axial elongation could significantly affect the
nonlinear behaviour of deep coupling beams and should
thus be properly simulated or allowed for in model test-
ing and theoretical analysis.
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